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Abstract
The evolution of the spatial degrees of freedom of a photon propagating through atmospheric
turbulence is treated as a non-Markovian process. Here, we derive and solve the evolution
equation for this process. The turbulent medium is modeled by a sequence of multiple phase
screens for general turbulence conditions. The non-Markovian perspective leads to a second-
order differential equation with respect to the propagation distance. The solution for this
differential equation is obtained with the aid of a perturbative analysis, assuming the turbulence
is relatively weak. We also provide another solution for more general turbulence strengths, but
where we introduce a simplification to the differential equation.

Keywords: non-Markovian process, atmospheric turbulence, perturbative analysis, photonic
quantum state

1. Introduction

The scintillation that a photonic quantum state experiences as
it propagates through a turbulent atmosphere is a topic of
considerable importance for free-space quantum commu-
nication. Apart from the laboratory experiments on the pro-
pagation of photonic quantum states through simulated
turbulence [1–3], a number of experimental demonstrations of
quantum key distribution through free-space has also been
done [4–6]. The evolution of the quantum state in these
scenarios can be considered using a single phase screen (SPS)
model [7], provided that the scintillation remains weak. While
the SPS model is used in most of the work that has been done
in this field [1, 8–13], a more accurate multiple phase screen
(MPS) approach has been proposed recently [14–17]. The
MPS approach is based on the principle of infinitesimal
propagation, which allows one to derive an equation for the
evolution of the quantum state, called the infinitesimal pro-
pagation equation (IPE). The IPE is a first-order differential
equation with respect to the propagation distance, which can
be solved [17] to obtain an expression for the density matrix
of the quantum state at arbitrary propagation distances and
under arbitrary turbulence conditions.

However, all previous analyses of the evolution of pho-
tonic quantum states propagating through turbulence,
including the IPE, employed a Markov approximation. In this
approximation it is assumed that the medium is delta-corre-
lated with itself along the propagation direction. For the
derivation of the first-order differential equation of the IPE,
one effectively assumes that the infinitesimal propagation step
size is larger than the intrinsic scale, which in this case is the
outer scale of the turbulence. To obtain the differential
equation, one takes the limit where the step size goes to zero.
On the other hand, the outer scale is assumed to go to infinity,
allowing one to use the Kolmogorov turbulence model [18].
This seems to be a clear contradiction without a suitable
justification. Between the inner and outer scale the Kolmo-
gorov spectrum of turbulence exhibits a power-law decay
without any intrinsic scale. Therefore, the pertinent scale is set
by the edge of this inertial range—the outer scale. This results
in long range correlations along the propagation direction,
which contradicts the delta-correlation assumption. To some
extent, the fact that the refractive index fluctuations are very
small and thus allows light to propagate over long distances
with minimal effect, mitigates this contradictory relationship
between the step size and the outer scale. Still, our
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understanding of the evolution of photonic quantum states in
turbulence would clearly benefit from a non-Markovian
analysis.

In this paper, we employ a non-Markovian approach to
study the evolution of photonic quantum states propagating
through turbulence. We provide the derivation of a non-
Markovian IPE, which takes the form of a second-order
differential equation. The resulting equation has a form that
does not in general have a solution. For this reason one needs
to apply some simplifications or approximations to solve the
differential equation. Here, we will show two such approa-
ches. In the first approach we assume that the turbulence is
weak, which allows one to perform a perturbative expansion
of the solution for the differential equation. The weak tur-
bulence conditions can be considered as complimentary to the
SPS model, which implies strong turbulence conditions [17].
The second approach is to modify the functional form of the
differential equation. The resulting differential equation then
does have a solution. Here, we will only consider the single-
photon case for the latter approach.

The paper is organized as follows. In section 2, we
provide a brief review of background material, followed by a
discussion of the approach that we will use to obtain a non-
Markovian equation in section 3. The derivation of the non-
Markovian IPE is shown in detail in section 4. We provide the
two different approaches to find solutions for the non-Mar-
kovian IPE in sections 5 and 6, respectively. In section 7 we
discuss some pertinent aspects of these analyses, followed by
some conclusions in section 8.

2. Background

2.1. Notation

The discussions in this paper include both two-dimensional
functions (such as the phase functions) and three-dimensional
functions (such as the refractive index fluctuations). For this
reason we need to define both two-dimensional and three-
dimensional vectors to represent coordinate vectors. The two-
dimensional coordinate vectors are always defined in the
transverse plane, perpendicular to the propagation direction,
the latter being the z-direction. For position coordinates, the
two-dimensional position vector is denoted by a bold small x,
while the three-dimensional position vector is denoted by a
bold capital X. In the Fourier domain we prefer to work with
spatial frequency vectors. The two-dimensional spatial fre-
quency vector is denoted by a bold small a, while the three-
dimensional spatial frequency vector is denoted by a bold
capital A. Occasionally, we will also use the three-dimen-
sional propagation vector, denoted by a bold capital
K A2p= . The small k is used to represent the wave number,
which is not equal to K∣ ∣.

During the analysis we will obtain expressions for den-
sity matrices in terms of different sets of coordinates. Instead
of denoting all these density matrices by the same symbol ρ,
we rather avoid possible confusion by using different symbols
R, H, etc. to represent the density matrices, depending on their

arguments. We only use ρ to represent the density matrix in
generic discussions and for the final expressions of the
solutions.

2.2. Scintillation

For a thin enough slab of the turbulent medium, one can
represent the scintillation process as a phase modulation. The
phase functions that represent the turbulent medium in such a
modulation process are random functions taken from an
ensemble of such functions. Each one is obtained from an
element of the ensemble of refractive index fluctuations
n X( )d , by an integration along the direction of propagation—
the z-direction. The phase functions are therefore defined by

k n zx X d , 1
z

0
( ) ( ) ( )òq d=

where k is the wavenumber, given as k 2p l= in terms of
the wavelength λ.

In the calculations of the evolution process, one often
finds ensemble averages over phase functions, which give rise
to the phase autocorrelation function. The latter is defined by

B x x x , 21 2( ) { ( ) ( )} ( ) q qD =q

where {·} denotes the ensemble average and x x x1 2D = - .
The autocorrelation function is also referred to as a covariance
function, because these random functions are assumed to have
zero mean.

A similar definition exists for the refractive index auto-
correlation function

B n nX X X , 3n 1 2( ) { ( ) ( )} ( ) d dD =

where X X X1 2D = - . The refractive index autocorrelation
function is related to the refractive index structure function in
the following way

D B BX X2 0 2 . 4n n n( ) ( ) ( ) ( )D = - D

In the Kolmogorov theory [18] the refractive index structure
function is given by

D CX X , 5n n
2 2 3( ) ∣ ∣ ( )D = D

where Cn
2 is the refractive index structure constant.

The Wiener–Kinchine theorem [19] relates autocorrela-
tion functions to power spectral density functions. For the
refractive index autocorrelation function we have

B aX K A Xexp i2 d , 6n n
3( ) ( ) ( · ) ( )ò p= F -

where Kn ( )F is the refractive index power spectral density. In
the Kolmogorov theory, the latter is given as [18]

CK K0.033 2 7n n
3 2 11 3( ) ( ) ∣ ∣ ( )pF = -

and the extra 2 3( )p factor is due to a difference in the
definition of the Fourier transform [15]. The phase auto-
correlation function is expressed as

B ax a a xexp i2 d , 82( ) ( ) ( · ) ( )ò p= F -q q

in terms of the phase power spectral density a( )Fq .

2
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Using equations (1)–(3), we express the two-dimensional
phase autocorrelation function in terms of the three-dimen-
sional refractive index autocorrelation function

B k n n z z

k B z z

x X X

X

d d

d d . 9

z z

z z

n

2

0 0
1 2 1 2

2

0 0
1 2

( ) { ( ) ( )}

( ) ( )

ò ò

ò ò

d dD =

= D

q

Substituting equations (6) and (8) into (9), we obtain an
expression for the phase power spectral density in terms of the
refractive index power spectral density

k z z c

z z c

a

K

exp i2

d d d , 10
z

z

z

z

n

2
1 2

2 1

0 0

( ) [ ( ) ]

( ) ( )
ò ò ò pF = - -

´ F

q

where c is related to the ‘z-component’ of K (k c2z p= ). The
integrals over z indicate that the refractive index fluctuations
over the entire propagation path up to z contribute to the
behavior at z.

2.3. Multiple phase screens

The infinitesimal propagation principle, which allows a MPS
approach, follows from considering the change in the pho-
tonic state due to an infinitesimal propagation through the
medium. The operation of such an infinitesimal propagation
on the density operator can be expressed by

z z z U z Ud d , 11ˆ ( ) ˆ ( ) ˆ ( ) ( )†r r d r + =

where dU is a unitary operator representing the infinitesimal
propagation through the turbulent medium. When the density
operator is expressed as a density matrix in terms of some
arbitrary discrete basis m∣ ñ, the output density matrix
elements, after the infinitesimal propagation, are given by

z z m U p z q U nd d . 12mn
pq

pq( ) ∣ ∣ ( ) ∣ ∣ ( )†år d r+ = á ñ á ñ

Using the paraxial wave equation in an inhomogeneous
medium, given by [18]

g k g k n gX X X Xi2 2 0, 13T z
2 2( ) ( ) ( ) ( ) ( )d - ¶ + =

where g X( ) is the scalar electric field, one can show that [16]

m U p z zd i , 14mp mp mp∣ ∣ ( ) d d dá ñ = + +

where mpd is the Kronecker delta,

z
k

G z G z aa a a
2

, , d 15mp m p

2
2 2( ) ∣ ∣ ( ) ( ) ( )* ò

p

and

z k G z N z G z a aa a a ai , , , d d .

16

mp m p
2 2( ) ( ) ( ) ( )

( )

* òò- - ¢ ¢ ¢

Here, G za,m ( ) and N za,( ) represent the transverse two-
dimensional Fourier transforms of g x mXm ( ) ∣= á ñ and n X( )d ,
respectively.

The infinitesimal propagation of the density operator then
leads to the following equation for each element in the

ensemble [16]

z z z z z

z z z

z z

i ,

. 17

mn mn mn

p
mp pn

mp pn

0 0 0

0 0

0 0

( ) ( ) [ ( )]
[ ( ) ( )

( ) ( )] ( )†






å
r d r d r

d r

r

+ = +

+

+

The right-hand side of equation (17) can be represented by an
integral over a small range of z to replace the factor of zd . If
one were to compute the ensemble average of equation (17),
the dissipative term (sum over p) would vanish, because

N 0{ } = . One needs an expression with terms that are
second-order in N before computing the ensemble averages to
have non-zero dissipative terms. The result of such ensemble
averages would then contain autocorrelation functions
of N za,( ).

2.4. Markov approximation

The Markov approximation enters at the point where one
computes the autocorrelation function of N za,( )

z z N z N za a a a, , , , , . 181 2 1 2 1 1 2 2( ) { ( ) ( )} ( )*G =

One can model N za,( ) as

N z cz ca
K

A, exp i2 d , 19n
3

1 2

( ) ( ) ˜ ( ) ( ) ( )
⎡
⎣⎢

⎤
⎦⎥ò c p=

F
D

-

where Δ is a correlation length in the frequency domain and
A˜ ( )c is a normally distributed, delta-correlated, random

complex function, with a zero mean. Hence

A A A A . 201 2
3

3 1 2{ ˜ ( ) ˜ ( )} ( ) ( )* c c d= D -

Since n X( )d is a real-valued function, the random complex
functions also have the property A A˜ ( ) ˜ ( )*c c= - . With the
aid of equation (19), we write equation (18) as

z z

z z c c

a a a a

K

, , ,

exp i2 d .

21
n

1 2 1 2 2 1 2

1 2 1 1 1

( ) ( )

[ ( ) ] ( )
( )

ò
d

p

G = -

´ - - F

In the Markov approximation, it is assumed that only the
values of the field and the medium at z contribute to the
behavior at z. This assumption implies that the refractive
index fluctuations are delta-correlated along the z-direction. In
the Fourier domain, the spectrum of the refractive index
fluctuations would then be constant along the z-direction. In
other words, the spectrum only depends on the transverse
Fourier coordinates a. The result is that one can substitute
kz = 0 (c=0) in Kn ( )F . Making this substitution and eval-
uating the integrals in equation (10), one arrives at a simpler
relationship given by

zka a2 , 0 . 22n
2( ) ( ) ( )pF = Fq

The simpler expression for a( )Fq can in turn be used to
simplify the model for N:

N za a
a

, , 23
2

1 2

( ) ˜ ( ) ( ) ( )
⎡
⎣⎢

⎤
⎦⎥c=

F
D
q
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where a˜ ( )c is now a two-dimensional random function, but
other than that has the same properties as A˜ ( )c .

The Markov approximation is introduced into
equation (21) by setting kz = 0 in Kn ( )F , which gives

z z
z

a a a a a, , ,
2

2 , 0 , 24n1 2 0 2 1 2 1( ) ( ) ( ) ( )d
d pG » - F

where z z z0d = - . The factor of zd leads to a first-order
differential equation—the Markovian IPE [16].

3. Non-Markovian approach

For the non-Markovian approach, we proceed without setting
kz = 0 in Kn ( )F . As a result, the integrals in equation (10)
need to be evaluated by using an explicit expression for

Kn ( )F . On the other hand, one can exploit the fact that zd is
small for infinitesimal propagations. This allows one to
expand equation (21) up to leading order in zd . As a result we
have

z z
z

ca a a a K, , ,
2

d . 25n1 2 0

2

2 1 2 1 1( ) ( ) ( ) ( )ò
d

dG » - F

The factor of z2d (instead of just zd ) suggests that the non-
Markovian equation could be a second-order differential
equation.

In the derivation in section 4 and appendix A, we will
find that z z z1 2= = . Thus, the correlation function in
equation (18) or (21) becomes independent of z

N z N za a a a
a a a

, , ,
, 26

1 2 1 2

2 1 2 1 1

( ) { ( ) ( )}
( ) ( ) ( )

*
d

G =
= - F

where

ca K d . 27n1 1 1 1( ) ( ) ( )òF F

Master equations for non-Markovian systems (for
example, the Nakajima–Zwanzig equation [20, 21]) in general
have the form

z K z z z z, d , 28z
z

z

0

( ) ( ) ( ) ( )òr r¶ = ¢ ¢ ¢

where K z z,( )¢ is a super-operator that represents the memory
in the system. Taking another derivative with respect to z on
both sides

z K z z z K z z z z, , d , 29z
z

z

z
2

0

( ) ( ) ( ) [ ( )] ( ) ( )òr r r¶ = + ¶ ¢ ¢ ¢

one finds that the right-hand side still contains an integral over
z. It is therefore not in general possible to describe non-
Markovian systems in terms of a pure second-order differ-
ential equation, having no integrals over z. If, however,
K z z K z,( ) ( )¢ = ¢ in equation (28), one would obtain

z K z z . 30z
2 ( ) ( ) ( ) ( )r r¶ =

In the particular case under consideration, it is possible to
obtain a pure second-order differential equation, without

integrals over z. Consider equation (17), expressed as a first-
order differential equation

z z z

z z z z

i ,

. 31

z mn mn

p
mp pn mp pn

( ) [ ( ) ( )]
[ ( ) ( ) ( ) ( )] ( )†



 å
r r

r r

¶ =

+ +

If one differentiates equation (31) on both sides with respect
to z, replaces the resulting first derivatives zz ( )r¶ again by
equation (31) and computes the ensemble average, by taking
into account that N N 0z{ } { } = ¶ = , one obtains a result
without z-integrals that reads

z z z z z z

z z z

z z z

z z z

i , , ,

2

.

32

z mn z mn mn

p q
mp pq qn

mp pq qn

mp pq qn

2

,

( ) [ ( ) ( )] [ ( ) [ ( ) ( )]]
{ ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )}
( )

†

†

†

  

  

 

 

å
r r r

r

r

r

¶ = ¶ -

+

-

-

Here we used the fact that the ʼs are anti-hermi-
tian: mn mn

† = - .
Using equations (16), (23) and (26), we compute the

ensemble average over the pq ʼs. The result is [16]

z z

k W z W z aa a a, , d , 33

mnpq mp qn

mp nq
2

1
2

{ ( ) ( )}

( ) ( ) ( ) ( )

†

*

  

ò
L

= F



where

W z G z G z aa a a a, , , d . 34ab a b
2( ) ( ) ( ) ( )*ò ¢ + ¢ ¢

When two of the indices on the pq ʼs are contracted, one can
use the orthogonality and completeness conditions of the
modal basis to show that [16]

k aa d . 35
p

mnpp mn mn T
2

1
2( ) ( )òå d dL = F L

Substituting equations (33) and (35) into equation (32), we
obtain

z z z z z z

k W z z W z

a z

a a

a

i , , ,

2 , ,

d 2 .

36

z mn z mn mn

p q
mp pq qn

T mn

2

2

,

1
2

( ) [ ( ) ( )] [ ( ) [ ( ) ( )]]

( ) ( ) ( )

( ) ( )
( )

†

  

ò å

r r r

r

r

¶ = ¶ -

+

´ F - L

The result in equation (36) is a general expression for the non-
Markovian IPE in an arbitrary discrete basis for a single
photon propagating through turbulence. The commutators in
equation (36) are the kinetic terms of the equation and
represents the unitary evolution of the state. The second and
third line in equation (36) contain the dissipative terms
responsible for the decay in the coherence of the state.

Comparing equation (36) with the equivalent Markovian
Lindblad equation (equation (62) in [16] with minor changes

4
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in notation)

z z z

k
W z

z W z

W z W z z

z W z W z a

a a

a

a a

a a

i ,

2
2 ,

,

, ,

, , d , 37

z mn mn

p q
mp

pq qn

mp pq qn

mp pq qn

2

0
,

2

( ) [ ( ) ( )]

( ) [ ( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( )] ( )

†

†

†



ò å

r r

r

r

r

¶ =

+ F

´

-

-

keeping in mind the definition of TL given in equation (35),
we note that the dissipative part of these equations are the
same. Since the form of the Lindblad equation, such as the
one shown in equation (37), ensures that the density matrix
remains completely positive and preserves its trace, the same
would therefore be true for equation (36).

Note, however, that the definitions of 0F and 1F are
different in the two equations. In the Markovian case, given
by equation (37), we have a a2 , 0n0 ( ) ( )pF = F . Whereas for
the non-Markovian case given in equation (36), 1F is defined
by an integration of nF , as shown in equation (27). The dif-
ference in the definitions of 0F and 1F , leads to a difference in
their dimensions, as required by the fact that the number of
derivative with respect the z is different in the two equations.
For the Markovian case, a0 ( )F has the dimension of distance
cubed. In the context of the Lindblad equation, one can
interpret a0 ( )F as acting as (being proportional to) a decay
constant γ. As such the rate of exponential decay of each of
the respective Fourier components, labeled by a, is governed
by the value of a1( )F .

For the non-Markovian case, a1( )F carries the dimension
of distance squared. Since the non-Markovian master
equation in (36) is a second-order differential equation, the
individual Fourier components will undergo oscillations,
instead of exponential decay. In this context, a1( )F provides
(is proportional to) the (spatial) frequency for the oscillations
of each of the respective Fourier components, labeled by a.
The mechanism for the decay in the coherence of the state is
in this case provided by the dephasing among all the different
Fourier components due to their different spatial frequencies,
given by the different function values of a1( )F . However, due
to the oscillations, it may be possible to observe coherence
revivals at particular propagation distances, depending on the
nature of the input state.

Below, we will repeat this derivation in detail, but we
will perform the derivation in the plane wave basis (Fourier
domain), which is more beneficial for the purpose of finding
solutions for the differential equation [17].

4. The non-Markovian IPE

In the transverse Fourier domain, the paraxial wave equation
in an inhomogeneous medium is given by

G z G z kN z G za a a a a, i , i , , , 38z
2( ) ∣ ∣ ( ) ( ) ( ) ( )pl¶ = -

where G za,( ) is the transverse two-dimensional Fourier
transforms of g X( ) and å denotes convolution. The first term

on the right-hand side of equation (38) represents free-space
propagation and the second term produces distortions due to
the effect of the medium.

It is convenient to work in a ‘rotating’ frame in which the
free-space term is removed. This is done by using

G z F z za a a, , exp i , 392( ) ( ) ( ∣ ∣ ) ( )pl=

to convert the paraxial wave equation in (38) into

F z k N z F z

z u

a a u u

a u

, i , ,

exp i d . 40

z

2 2 2

( ) ( ) ( )

[ (∣ ∣ ∣ ∣ )] ( )
ò

pl

¶ =- -

´ - -

To derive a non-Markovian IPE for a single-photon input
state from equation (40), we assume that the input is a single-
photon pure state in the plane wave basis, given (in the
rotating frame) by

R z F z F za a a a, , , , . 411 2 1 2( ) ( ) ( ) ( )*=

The details of the derivation of the non-Markovian IPE for the
single-photon input state in equation (41) is shown in
appendix A. The result is

R z k R

z z

R z u

a a a u a

u a a u

a a u

, , 2 ,

, exp i2

, , d . 42

z
2

1 2
2

1 2

1 2

1 2 1
2

( ) { (

) [ ( ) · ]
( )} ( ) ( )

ò
pl

¶ = -

- - -
- F

Although it has an integral over the Fourier variables u, the
non-Markovian IPE is a second-order differential equation
without any integrals over z.

The expression, equivalent to equation (42), for the two-
photon states is given by

R z k R z

z
R z

z

R z u

a a a a a u a u a a

a a u
a a a u a u

a a u

a a a a u

, , , , 2 , , , ,

exp i2
, , , ,

exp i2

2 , , , , d .

43

z
2

1 2 3 4
2

1 2 3 4

1 2

1 2 3 4

3 4

1 2 3 4 1
2

( ) { ( )

[ ( ) · ]
( )

[ ( ) · ]
( )} ( )

( )

ò
pl

pl

¶ = - -

´ - -
+ - -
´ - -

- F

To aid the solution of the non-Markovian IPE, we cast it
in a form that decouples the z-dependence from the Fourier
variables. This is done in a similar way as in [17], by per-
forming the following two steps, converting R S H  , all
of which represent density matrices, but in terms of different
sets of coordinates.

First, we redefine the Fourier variables (spatial fre-
quencies) in terms of sums and differences, defined by

a a a
1

2
, 44s d1 ( )= +

a a a
1

2
. 45s d2 ( )= -

The state is then also refined

R z R z

S z

a a a a a a

a a

, ,
1

2
,

1

2
,

, , . 46

s d s d

s d

1 2( ) ( )

( ) ( )

= + -
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The expression in (42) then becomes

S z k S z z

S z u

a a a u a a u

a a u

, , 2 , , exp i2

, , d .

47

z s d s d d

s d

2 2

1
2

( ) [ ( ) ( · )

( )] ( )
( )

ò pl¶ = - -

- F

The next step is to perform an inverse Fourier transform
with respect to the sum coordinates:

H z S z ax a a a a x, , , , exp i2 d . 48d s d s s
2( ) ( ) ( · ) ( )ò p= -

Equation (47) then reads

H z k Q z H zx a a x x a, , 2 , , , 49z d d d
2 2( ) ( ) ( ) ( )l¶ = - +

where

Q ux x u u1 exp i2 d . 501
2( ) [ ( · )] ( ) ( )ò p- - F

By combining the integral in equation (50) with the
definition in equation (27), we find that Q x( ) is related to the
refractive index structure function, with z=0

Q D Cx x x
1

2
, 0

1

2
. 51n n

2 2 3( ) ( ) ∣ ∣ ( )= =

Here we used the refractive index structure function from
Kolmogorov theory, given in equation (5). Note that this
structure function is only valid within the inertial range
between the inner and outer scales. The use of Kolmogorov
theory may therefore lead to divergences, for which one
would need to introduce some scale (typically the outer scale)
to regularize the integrals. Using the expression in (51), we
obtain an expression for the single-photon non-Markovian
IPE, given by

H z k C H z za x , 52z n d
2 2 2 2 3( ) ( )∣ ∣ ( )l¶ = - +

where H z H zx a, ,d( ) ( )º . The equivalent expression for the
two-photon case is

H z k C H z z

z

a x

a x , 53
z n d

d

2 2 2
1 1

2 3

2 2
2 3

( ) ( )(∣ ∣
∣ ∣ ) ( )

l

l

¶ =- +

+ +

where H z H zx a x a, , , ,d d1 1 2 2( ) ( )º .
The second-order differential equations obtained in (52)

and (53) are of the form given in equation (30), which does
not have a general solution. To solve these differential
equations, we use some approximations, discussed in the
following two sections.

5. Perturbative solution

For the first method to solve the differential equation in (52),
we assume that the turbulence is weak enough (Cn in
equation (52) is small enough) to allow a perturbative
approach. This approach has the benefit that it can be gen-
eralized to the two-photon case, but first we will consider the
single-photon case.

5.1. Single-photon state

Consider a second-order differential equation having the form
of equation (52) (or equation (30)), with the coupling constant
g, which is proportional to the turbulence strength, made
explicit

H z gK z H z . 54z
2 ( ) ( ) ( ) ( )¶ =

Expand the solution as a Maclaurin series in g

H z H z gH z g H z 550 1
2

2( ) ( ) ( ) ( ) ( )= + + + 

and substitute it back into equation (54). Setting g=0, one
obtains the zeroth-order perturbation

H z 0. 56z
2

0 ( ) ( )¶ =

Its solution must satisfy the initial conditions.
The two initial conditions for the second-order differ-

ential equation in (54) can be stated as follows:

(i) the initial rate of change of the state is zero

H z 0 57z z 0( )∣ ( )¶ ==

and
(ii) the state at z=0 is given by the input state

H H0 . 58in( ) ( )=

The solution of equation (56) that satisfies these initial
conditions is

H z H . 590 in( ) ( )=

The first-order perturbation is obtained by taking a
derivative with respect to g before setting g=0. The
resulting equation

H z K z H z K z H , 60z
2

1 0 in( ) ( ) ( ) ( ) ( )¶ = =

has a solution satisfying the initial conditions, given by

H z H K z z zd d . 61
z z

1 in
0 0

1 1 2
2

( ) ( ) ( )ò ò=

Here we will only go to sub-leading order in g. There-
fore, our total solution, obtained from equations (59) and (61),
is

H z H K z z z1 d d , 62
z z

in
0 0

1 1 2
2

( ) ( ) ( )
⎡
⎣⎢

⎤
⎦⎥ò ò= +

where we reabsorbed g into K(z). The validity of the solution
in equation (62) is based on the assumption that the expansion
parameter g is small. In appendix B we derive an expression
for g in terms of the dimension parameters. Using this
expression, one can determine the conditions under which the
expansion parameter would be small enough for the
perturbative solution to be valid.

To obtain an explicit expression for equation (62), one
needs to evaluate the double z-integration of K(z). The
expression for K(z) for the single-photon case, according to

6

J. Opt. 18 (2016) 055203 F S Roux



equation (52), is

K z k C za x . 63n d
2 2 2 1 3( ) (∣ ∣ ) ( )l= - +

The solution in equation (62) can thus be expressed as

H z H k C P z z z1 d d , 64n

z z

in
2 2

0 0

1 3
1 2

2

( ) ( ) ( )
⎡
⎣⎢

⎤
⎦⎥ò ò= -

where

P z z z za x a a x x2 .
65

d d d
2 2 2 2 2( ) ∣ ∣ ∣ ∣ ( · ) ∣ ∣

( )
l l l= + = + +

The evaluation of the integrations over z in equation (64)
is briefly discussed in appendix C. The result is given by

H z H

k C
z

k C
z

z
k C

z

x a x a

a x a a x a x
a

a x
a x

a a x a x
a

a a x
a x

a a x a x a x
a

, , , 1

F
1

3
,

1

2
;

3

2
;

F
1

3
,

1

2
;

3

2
;

3

8

,

66

d d

n
d d d d

d

d

d

n
d d d

d

d d

d
n

d d d d

d

in

2 2
2 2 3

2 14 3

2 1

2

2

2 2
2 2 2 3

2 14 3

2 1

2 2

2
2 2

2 2 2 4 3 8 3 8 3

2 14 3

( ) ( )

( · )(∣ ∣ · )∣ ∣
∣ ∣

( · )
∣ ∣

(∣ ∣ · ) ∣ ∣
∣ ∣
(∣ ∣ · )

∣ ∣

[(∣ ∣ · ) ∣ ∣ ] ∣ ∣ ∣ ∣
∣ ∣

( )

⎧⎨⎩

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎫⎬⎭

l
l

l
l

l

l
l

=

+
+ ´

´
- -

´

-
+ ´

´
- - +

´
+

´
+ + ´ -

where H x a, din ( ) is the input state, F2 1 denotes a hyper-
geometrical function and where we used the identity

A B A B A B , 672 2 2 2( · ) ∣ ∣ ∣ ∣ ∣ ∣ ( )+ ´ =

for abitrary vectors A and B.
The expression in (66) has the form

H z H T zx a x a x a, , , , , , 68d d din( ) ( ) ( ) ( )=

where T (·) is the part in curly brackets in equation (66). It can
be represented as

T z gW zx a x a, , 1 , , . 69d d( ) ( ) ( )= +

Here W zx a, ,d( ), which is proportional to the part in
equation (66) that is multiplied by Cn

2, represents the
dissipative part of the kernel and

g
C w4

, 70n
4 2

0
14 3

4
( )

p
l



is a dimensionless coupling constant. Its expression is
obtained by rendering the expression in (64) in terms of
dimensionless quantities, as shown in appendix B.

The expression in (66) depends on a mixture of Fourier
and position domain coordinates. It is preferable to obtain an
expression purely in terms of Fourier coordinates, to allow
comparison with the previously obtained Markovian expres-
sion [17]. For this purpose we perform the steps of section 4
in reverse: H S R  . Then we also multiply the result
with the free-space propagation phase factor, converting

R r . The resulting final expression is

z z z

T z x u

a a a a a u a u

x a a x u

, , exp i , ,

, , exp i2 d d .

71

1 2 1 2
2

in 1 2

1 2
2 2

( ) [ ( ) ] ( )

( ) ( · )
( )

òr pl r

p

= - - -

´ -

Note that the integration over x will perform a Fourier
transform of T (·) and the integral over u is a convolution of
the input density matrix with the resulting kernel function.

In the absence of turbulence (g = 0), we have T=1.
The integral over x then gives a Dirac-delta function, which
renders u 0= after integration over u. The result gives the
output density matrix as the input density matrix times the
free-space propagation phase factor, as expected for free-
space propagation without turbulence.

One can compare equation (71) with the Markovian
expression (equation (22) in [17]), which has the form1

z z z

K z u

a a a a a u a u

u a a

, , exp i , ,

, , d ,

72

1 2 1 2
2

in 1 2

1 2
2

( ) [ ( ) ] ( )

( )
( )

òr pl r= - - -

´ -

where K (·) is the Markovian kernel function, which
corresponds to the Fourier transform of T (·). Hence, the final
expression of the non-Markovian analysis has the same form
as the previously obtained Markovian expression.

5.2. Two-photon state

The result in equation (71), together with equation (66),
represents a perturbative solution for the single-photon diff-
erential equation given in equation (52). One can generalize
this solution to the two-photon case. The general perturbative
solution for the two-photon case, analogous to equation (62),
is

H z H K z z z

K z z z

1 d d

d d , 73

z z

z z

in
0 0

1 1 1 2

0 0
2 1 1 2

2

2

( ) ( )

( ) ( )

⎡
⎣⎢

⎤
⎦⎥

ò ò

ò ò

= +

+

where K z1( ) and K z2 ( ) are associated with the two photons,
respectively.

In analogy to equation (69), the expression of T (·) that
one would obtain for the two-photon case, after evaluating the
integrals in equation (73), simply becomes

T z
gW z gW z

x a x a
x a x a

, , , , 1
, , , , , 74

d d

d d

2 1 1 2 2

1 1 2 2

( )
( ) ( ) ( )

=
+ +

where W (·) is the same function as in equation (69).

6. Modified differential equation

The perturbative solution that we obtained above is strictly
speaking only valid when the turbulence is fairly weak. It

1 For the sake of the comparison we changed the sign of the integration
variable u and expressed the normalized propagation distance t in terms of z.
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would be useful to have another solution that is valid under
more general turbulence conditions. Here we consider an
alternative approach to solve the differential equation in (52).
The idea is that, although the differential equation in (30)
does not have a solution in general, it does have solutions
when K(z) has a particular functional form. In what follows,
we will consider one such example.

The differential equation in (52) can be written as

H z k C P z H z , 75z n
2 2 2 1 3( ) ( ) ( ) ( )¶ = -

where P(z) is given in equation (65). With the aid of
equation (67), one can express P(z) as

P z
z a a x a x

a
. 76d d d

d

2 2 2

2
( ) [ ∣ ∣ ( · )] ∣ ∣

∣ ∣
( )l

=
+ + ´

A special case that does allow a solution for
equation (52), is when the cross-product term in equation (76)
is neglected. The differential equation then has the form

H z z H z , 77z
2 2 2 3( ) ( ) ( ) ( )a z¶ = - +

where

Ca2
, 78

d n
1 3 2

2 3

∣ ∣
( )a

p
l

=

a x
a

. 79d

d
2

( · )
∣ ∣

( )z
l

=

The modification that is applied to the differential equation
assumes that the cross-product between these particular
coordinate vectors gives a vanishing contribution to the final
result. This assumption depends on the particular input optical
field. For instance, if the input optical field is a Gaussian
beam, then the expectation value of the cross-product
between these coordinate vectors is zero.

The differential equation in (77) has the solution

H z C z J z

C z Y z

3

4
3

4
, 80

1 3 8
4 3

2 3 8
4 3

( ) ( )

( ) ( )

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

z
a

z

z
a

z

= + +

+ + +

where Jn and Yn are Bessel functions of the first and second
kind, respectively, and C1 and C2 are constant to be
determined by the initial conditions, given in equations (57)
and (58).

Applying the first initial condition given in equation (57),
one finds that the constants must have the forms

C C Y
3

4
, 811 0 5 8

4 3 ( )⎜ ⎟⎛
⎝

⎞
⎠

a
z= -

C C J
3

4
, 822 0 5 8

4 3 ( )⎜ ⎟⎛
⎝

⎞
⎠

a
z= - -

where C0 is a constant, common to both C1 and C2.
Substituting equations (81) and (82) into (80), one obtains

an interim expression for the solution, given by

H z C z Y J z

J Y z

3

4

3

4

3

4

3

4
.
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0 5 8
4 3

3 8
4 3
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⎝

⎞
⎠
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⎤
⎦⎥

⎛
⎝

⎞
⎠

⎡
⎣⎢

⎤
⎦⎥

⎫⎬⎭

z
a
z

a
z

a
z

a
z

= + +

- +

-

-

Now we apply the second initial condition given in
equation (58) to the expression in (83) to obtain

H H C Y J

J Y

C

0
3

4

3

4

3

4

3

4
8

3
, 84
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⎠
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⎞
⎠

⎤
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a
z

a
z

a
z

a
z

pz a

= =

-

=

-
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where we used the Wronskian

J z Y z Y z J z
z

2
, 851 1( ) ( ) ( ) ( ) ( )

p
- =n n n n+ +

to obtain the last expression in (84). It gives a relationship
between C0 and Hin, which is then used to replace C0 in
equation (83). The resulting solution reads

H z H z

Y J z

J Y z

3

8
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4

3
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3

4

3

4
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The expression for the solution of the simplified differ-
ential equation that satisfies the initial conditions, is obtained
from equation (86) by substituting equations (78) and (79),
into it. We express the result as

H z H z

Y

J
z

J

Y
z

x a x a a a x

a x
a

a x
a

a a x
a

a x
a

a a x
a
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d d d d
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Here H x a, din ( ) is the input state and

C g

w

3

2

3

4
. 88n
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2
0
7 3

( )b
p
l p

=
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As with the solution of the perturbative analysis, the
expression in (87) has the form given in equation (68), where
the expression of T (·) is given by the right-hand side of
equation (87), without H x a, din ( ). In the Fourier domain, the
solution therefore also takes the form given in equation (71),
as one would expect.

Setting 0b = (g = 0) in equation (87), one can show
that T=1. Therefore, in the absence of turbulence, one again
recovers the normal free-space propagation in the same way
as with the perturbative solution.

Unfortunately, the result given in equation (87) cannot be
directly generalized to a two-photon case, as in the pertur-
bative case above. The reason is that, when the simplification
that was applied to equation (52) to give equation (77), is
applied to equation (53), the resulting differential equation is
not solvable.

7. Discussion

It is important to note that, although the system under
investigation here deals with the evolution of a quantum state,
it should not be confused with a non-Markovian quantum
process. The latter concerns a situation where a system
interacts with an environment such that the process needs to
be described as an interacting quantum theory, formulated in
terms of quantum mechanics. Such non-Markovian quantum
processes are in general quite complex (see for instance [22]).

In contrast, the non-Markovianity that one encounters in
the evolution of a photonic quantum state through turbulence
is of a simpler nature. The process is essentially linear, having
no interactions. One can see this from the fact that when light
propagates through turbulent air, the effect of the light on the
air is negligible (one does not see ripples in the air after the
light passed through it). From a field theory perspective, one
can say that the (scalar) field which represents the turbulent
fluid has a large mass. Therefore, by assuming that this mass
becomes infinite, one can ‘integrate out’ the scalar field,
leaving a linear, non-interacting theory. Therefore, the current
scenario does not have a quantum bath that acts as an
environment and interacts with the system. In the case of light
propagating through turbulence, the effect of the medium is
simply a continuous modulation process with a fixed non-
dynamical random function that extends over the propagation
distance.

Here we only consider the MPS approach. Although the
SPS model appears to follow from a Markovian approach, if
one were to derive the SPS model using a non-Markovian
approach, one would find that the leading contribution in the
non-Markovian approach gives the same expression for the
SPS model. The conclusions that one can derive from the SPS
model are therefore applicable regardless of whether one
considers a Markovian or non-Markovian approach.

One of the pertinent aspects of the SPS model is that it
gives the behavior of the state in terms of a single dimen-
sionless parameter w r0 0 = , where w0 is the optical beam
waist radius and r0 is the Fried parameter [23]. The rela-
tionship between the Rytov variance [18], which quantifies

scintillation strength, and indicates that, for a constant ,
the scintillation strength increases with propagation distance.
Since, the SPS model is only valid under weak scintillation
conditions, it breaks down when the propagation distance
becomes too large. In the context of the evolution of an
entangled quantum state propagating through turbulence, one
finds that the SPS model can only describe this evolution
correctly for the entire duration of a non-zero entanglement, if
the turbulence is strong enough to complete this evolution
over a relatively short propagation distance. As a result, one
can conclude that the SPS model provides a tool to study
quantum state evolution under strong turbulence condi-
tions [17].

To compliment the SPS model one needs another model
that can provide a tool to study quantum state evolution under
weak turbulence conditions. For the Markovian approach,
such a tool was presented in the form of the Markovian IPE
[14, 17]. Here we provide such a tool for the non-Markovian
approach, where we exploit the weakness of the turbulence to
obtain a perturbative solution.

We also provide another solution for the non-Markovian
IPE that does not assume weak turbulence. This is obtained
by modifying the differential equation for the non-Markovian
IPE. The resulting modified differential equation only works
for the single-photon case. Its solution cannot be generalized
to the two-photon case, because the simplification that is used
does not render a readily solvable differential equation in the
two-photon case. Nevertheless, it is not inconceivable that
one may be able to find a simplification that can be applied to
the two-photon differential equation which would allow
solutions. The resulting expressions would in general be even
more complex than those that we obtained here.

8. Conclusions

The propagation of a photonic quantum state through a tur-
bulent atmosphere is considered in terms of a non-Markovian
approach. This is done in contrast to the existing Markovian
methods that have been proposed before. We derive a non-
Markovian IPE, which takes the form of a second-order
differential equation with respect to the propagation distance.
The non-Markovian IPE contains no integrations over the
propagation distance. The form of this second-order differ-
ential equation does not allow immediate solutions.

To solve the non-Markovian IPE, we follow two different
approaches. The first is to assume the turbulence is weak
enough to allow a perturbative analysis. This approach gives a
solution that contains hyper-geometrical functions. Although
we obtain the solution for the single-photon case, it can be
generalized to the two-photon case.

The second approach is to apply a particular simplifica-
tion to the form of the differential equation. The resulting
simplified differential equation can be solved to give a solu-
tion in terms of Bessel functions of fractional order. It only
applies to the single-photon case.
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Appendix A. Derivation of the single-photon non-
Markovian IPE

Here we show in detail the derivation of the single-photon
non-Markovian IPE.

Differentiating equation (41) with respect to z, one
obtains

R z F z F z

F z F z

a a a a
a a

, , , ,

, , . A.1
z z

z

1 2 1 2

1 2

( ) [ ( )] ( )
( )[ ( )] ( )

*
*

¶ = ¶
+ ¶

Substitution of equation (40) into (A.1) then leads to
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A second derivative with respect to z produces several terms
on the right-hand side, but only those terms that contain
derivatives of F and F* will lead to terms that are second-
order in N. All the other terms fall away when ensemble
averaging is performed. Hence, retaining only those terms
that will survive ensemble averaging, we obtain
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After substituting equation (40) and its complex conjugate
into equation (A.3) for the second time, we have
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Next we evaluate the ensemble average of equation (A.4),
using equation (26), to obtain

R z k

F z F z

z
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z u v

a a a u a v
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, ,
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, ,
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z
2

1 2
2

2 1 2

1 1

2
2 2

1
2 2

2 1 1 1 2
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2 2

2 2 1 2 1

2
2 2 2 2
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( ) ( ) ( )
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( ) ( ) ( ) ( )
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*

*

*

ò d
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d

pl
d

pl

¶ = - - +

´ F -
´ - - +
- - F -
´ - -
- - F -
´ -

where a1 1( )F is defined in equation (27). We evaluate the
integrals over v to remove the Dirac-delta functions. After
some simplification, one then obtains the expression for the
single-photon non-Markovian IPE given in equation (42).

Appendix B. Coupling constant

To find an expression for a dimensionless coupling constant
we express equation (62), together with equation (65), in
terms of dimensionless coordinates and parameters. These are
defined by normalizing the original coordinates with the aid
of the characteristic dimension parameters

w

w

t
z

w

f a

r
x

,

,

. B.1

d0

0

0
2

( )

p

l
p







Here, w0 is the radius of the optical beam. In terms of these
coordinates, the solution in equation (62) can be expressed as

H t H t t tf r1
4

d d , B.2
t t

in 4 0 0

2 1 3
1 2

2

( ) (∣ ∣ ) ( )
⎡
⎣⎢

⎤
⎦⎥


ò ò= -

Q
+

where

C w , B.3n
2

0
2 3 ( ) 

is a normalized turbulence strength, and

w
, B.4

0
( )l

p
Q 

is the Gaussian beam divergence angle. The dimensionless
combination of the dimension parameters in front of the
dissipative term gives us the expression for the effective
coupling constant:

g
C w4 4

. B.5n
4

4 2
0
14 3

4
( ) p

lQ
=

Appendix C. Integration of the structure function

The z-integrals in equation (64) can be expressed by

z z za x d d . C.1
z z

d
0 0

2 1 3
1 2

2

(∣ ∣ ) ( ) ò ò l= +

One can evaluate this integral in different ways, leading to
expressions that may appear different, but represent the same
function. Here, we only show one such approach, where we
use a Dirac-delta function to remove the quadratic polynomial
from under the power of 1/3. The expression becomes

q b q z

z z b q

a xexp i2

d d d d . C.2

z z

d
0 0

0
1 3

0 0
2

1 2 0 0

2

[ ( ∣ ∣ )]

( )

 ò òòò p l= - +

´

An integration over b0 will turn the exponential function into
a Dirac-delta function.
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First, we evaluate the z-integrations, which leads to an
expression that contains error-functions. The error-functions
are replaced by auxiliary integrals

A
A

Aerf
2

exp d . C.3
0

1
2 2( ) ( ) ( )òp
x x -

Considering the b0-integrals of the resulting expression,
one finds two types of integrals. One is of the form that would
produce Dirac-delta functions which are then removed after
the q0-integration. The other is of the form

q U b

b
b q U

sin
d sign . C.40 0

0
0 0

[( ) ]
( ) ( )ò p

-
= -

The sign-function separates the integration range of q0 into
two regions that add with opposite signs. Once both the b0-
and q0-integrations are evaluated, one obtains

z z

z

z

z

x a x a x
a

a a x
a

a x a a x

a x a a x
a

a x a x

3

8

2

d

d .

C.5

d d

d

d d

d

d d d

d d d

d

d d

2 2 2 2 4 3 8 3

2 2

2 2

2 14 3

0

1
2 2 2 2 1 3

2

2 14 3

0

1
2 2 2 1 3

[∣ ∣ ( · ) ∣ ∣ ] ∣ ∣
∣ ∣
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∣ ∣
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( · )[ ∣ ∣ ( · )]
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ò

ò

l l
l

l
l

l x x

l
l

x x
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+
+
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-
+
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The remaining ξ-integrals are of the form

A B A
B

A
d F

1

3
,

1

2
;

3

2
; ,

C.6

0

1
2 2 2 1 3 2 1 3

2 1

2

2
( ) ( )

( )

⎛
⎝⎜

⎞
⎠⎟ò x x+ =

- -

where F2 1 denotes a hyper-geometrical function. After
evaluating the ξ-integrals and replacing the result into
equation (64), we obtain equation (66).
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