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Light beams that carry orbital angular momentum are often approximated by modulating an initial beam, usually
Gaussian, with an azimuthal phase variation to create a vortex beam. Such vortex beams are well defined azi-
muthally, but the radial profile is neglected in this generation approach. Here, we show that a consequence of this
is that vortex beams carry very little energy in the desired zeroth radial order, as little as only a few percent of the
incident power. We demonstrate this experimentally and illustrate how to overcome the problem by complex
amplitude modulation of the incident field. © 2016 Optical Society of America
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1. INTRODUCTION

For beams of the form E0�r�e−ilϕ, Allen et. al. associated the
index, l , with the orbital angular momentum (OAM) carried
by light, where ϕ is the azimuthal angle and r the radial
coordinate [1]. Beams with the azimuthal mode (e−ilϕ) that
adhere to the paraxial approximation are consequently known
to contain a well-defined OAM of lℏ per photon [1,2]. These
azimuthal modes are also known as vortex beams in light of the
associated helical twisting of the wave front along the propaga-
tion axis [1,3,4]. Vortex beams have since found many impor-
tant applications (most of which are highlighted in Refs. [4] and
[2]), such as optical tweezing [5], laser material surface process-
ing [6,7], quantum entanglement [8,9], optical communication
[10–12], image processing [13], and quantum metrology [14].
The subsequent creation of these beams is of great interest, and a
surfeit of techniques have been developed for their creation,
including spiral phase plates [15], holograms [16], spatial light
modulators [17], spiral Fresnel lenses [18], cylindrical lenses
[16,17], q-plates [19–21], and directly inside the source [22].
In the utilization of these vortex beams, the radial structure is
often disregarded, as the fundamental radial mode (p � 0) is a
ubiquitous choice in OAM experiments, with few exceptions
seen in the implementation and characterization of optical fibers
[23] and, recently, a quantum random walk [24].

Here, the effect of the missing radial component is investi-
gated and shown to have a deleterious effect on the spatial
power distribution of the desired OAM modes. Standard
approaches to creating such beams are revealed to manifest
unwanted radial modes that can contain the majority of the
energy. Furthermore, we show how to rectify this problem
through complex amplitude modulation.

2. VORTEX BEAMS

A vortex beam may be written as an azimuthal phase variation
with a Gaussian envelope in the generation (waist) plane:

ψ l �r;ϕ� � G�r�e−ilϕ; (1)

where G�r� � e−�r∕w0�2 is the Gaussian envelope, r is the radial
coordinate, w0 the Gaussian beam waist, and e−ilϕ the azimu-
thal phase variation with associated OAM of lℏ per photon
[1,2], where l is a non-zero integer. It has been noted that
vortex beams may also be expressed as a special case of
hypergeometric Gaussian modes [25].

This vortex field, however is not a solution to the free-space
wave equation, and as such, vortex beams are not eigenmodes
of free space, resulting in the excitation of supplementary fields
[26] and spatial polarization variance with propagation [27].

OAM-carrying beam structures fulfilling the conditions of
the free-space paraxial wave equation include Bessel [28,29]
and Laguerre–Gaussian (LG) modes [1,4,26], with which these
general vortex beams may subsequently be compared. Analyses
could be generalized to either of the mode types, but this paper
will focus on the LG modes whereby the amplitude at the beam
waist is given by [30]

LGp;l �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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(2)

Here, Ljl jp �x� is the Laguerre polynomial of orders p and l ,
where the radial index, indicating the number of radial nodes,
is p ≥ 0.
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It can be seen that for pure LG vortex modes (p � 0), there
is an additional amplitude term, �r ffiffiffi

2
p

∕w0�jl j, that ensures the
invariance associated with the eigenmodes as they propagate.
Similar terms with the same effect are also present in
Bessel–Gaussian and other beams that are eigenmodes of free
space. It is often unappreciated that it is this radial amplitude
term, which is dependent on the azimuthal index (jl j) and not
the azimuthal phase term itself (jl jϕ), that is responsible for the
characteristic beam core intensity null associated with vortex
beams. The observation of a null in vortex beams without this
amplitude term is instead due to high spatial frequencies
induced by the helicity of the phase together with their attenu-
ation due to the finite apertures in the optical system [31].

It is well known that an optical field may be expressed as a
linear combination of basis modes [32–34]:

U �r� �
X

jcjψ j�r�; (3)

where r � �x; y� is the spatial coordinate in the transverse
plane, and ψ j�r� represents the basis mode. The complex
correlation coefficient cj � ρjeiΔφj weighs the contribution
of each of the basis modes, where ρj is the corresponding mode
amplitude and Δφj the intermodal phase difference between
the jth mode and a selected reference mode. It thus follows that
the vortex beam (of a particular azimuthal index, l ) may easily
be expressed in terms of LG modes of the same azimuthal
index:

Ul �r;ϕ� �
X

pcpLGp;l �r�: (4)

Here, jcpj2 yields the power weighting of the vortex beam
among the LG modes and can be expressed as [25]

cp �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�p� jl j�!
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�
p� jl j
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�
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�
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; (5)

where Γ�x� is the gamma function. It is clear that the vortex
beam is the sum of many radial modes in the LG basis, i.e., the
same azimuthal index as the vortex beam but with several radial
indices. The implication is that the power in the desired p � 0
mode can be very small, approaching zero as the azimuthal
index increases.

The ensuing evaluation of the modes indicates a significant
spread of the power distribution to the outer spatial distribu-
tions, increasing concomitantly with the input OAM content.
In other words, rings around the central beam appear due to
additional radial indices when analyzed in terms of LG modes.
This is illustrated in Fig. 1, where the power content of each
mode, radial and azimuthal, in the LG basis is shown for a given
input azimuthal mode.

For example, an input vortex mode of l � 1 has only 78%
of its energy in the LG0;1 mode, with the rest spread across
higher radial modes. It can be seen from Fig. 1 that there is
a clear increase in the modal spreading as the input OAM
of the vortex beam is increased: an input vortex mode of
l � 10 has only 0.4% of its energy in the LG0;10 mode.
Consequently, a direct result of the missing amplitude term
is an increase in the power distribution as the OAM content
of the vortex beam increases. This is seen by the increased

spread of blue over the p-values at higher OAM values.
Observation of the low intensity also indicates a low power
content in any one of the radial modes with a higher OAM.
Furthermore, there is a movement of power concentration
to higher radial modes with OAM, as evidenced by the lower
intensity (black) for p � �0; 2� of l � �7; 10�. In fact, beyond
l � 4, the power content of the zeroth radial mode, the desired
mode, is close to zero.

3. EXPERIMENTAL METHODOLOGY AND
RESULTS

A. Methodology
Figure 2 displays the experimental setup for the generation and
analysis of a vortex beam in terms of LG radial modes. Two
steps were required for the experiment: generation of the vortex
beams, and the subsequent decomposition into LG radial
modes with the same azimuthal index.

1. Beam Generation
To generate vortex beams, a horizontally polarized He–Ne laser
of wavelength ∼633 nm was expanded through a 10× objective
lens and collimated by L1 (f 1 � 400 mm) before being
directed onto a reflective PLUTO-VIS HoloEye spatial light
modulator (8 μm, 1920 × 1080 pixels, calibrated at a 2π phase
shift for ∼633 nm) marked as SLM1. SLM1 was programmed
with an azimuthally varying phase profile, resulting in the first
diffraction order possessing the required structure as given by
Eq. (1). The addition of the quarter-wave plate (QWP) and
q-plate (QP) seen in Fig. 2 allowed for the creation of vector
vortex beams, which will be discussed later.

2. Modal Decomposition
An important technique, essential for analyzing the generated
beams in terms of LG modes, is modal decomposition. This

Fig. 1. Theoretical density plot, determined from Eq. (5), illustrat-
ing the spread of power into radial modes for vortex beams generated
through phase-only transformations and thus lacking the amplitude
term highlighted in Eq. (2).
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technique is often used for characterizing beams, whereby any
optical field may be expressed as a linear combination of basis
modes, as described in Eq. (3). Here, we let the basis set be the
chosen LG modes [Eq. (2)], allowing an arbitrary input field,
U �r�, to be described by a weighted superposition of these
modes. The orthonormality of the LG elements can be
exploited to ascertain the weighting coefficients (cp;l ) by
taking an inner product between the input field and desired
LG mode [33,34]:

cp;l � hU �r�jLGp;l �r�i �
Z Z

R2

U �r�LGp;l �r��d2r; (6)

where integration is over all space, and LGp;l�r�� is the complex
conjugate of Eq. (2). The complex conjugate of a basis mode is
often referred to as a match filter [35,36]. Determination of
the coefficient in terms of the field reflected off of SLM1

(U �r�LGp;l �r��) is possible by taking the Fourier transform
of Eq. (6) to yield

Up;l �kx; ky� �
ZZ

U �x; y�LGp;l �x; y��e−i�kxx�kyy�dxdy; (7)

where kx; ky are wave vectors. The on-axis intensity at the
Fourier plane (i.e., at the plane of CCD2 ) provides a physical
measurement of the inner product given in Eq. (6). The on-axis
point, �kx; ky� � �0; 0�, produces an expression equivalent to
Eq. (6):

Up;l �0; 0� �
Z Z

R2

U �r�LGp;l �r��d2r � cp;l : (8)

It follows that the intensity at the field center, I�0; 0�, will
then yield the power weighting (i.e., square of the weighting
coefficient):

I ρj �0; 0� � jUp;l �0; 0�j2 � jcp;l j2: (9)

The characterization of the vortex beam only extends to
the intensity correlations and not the intermodal phase

decomposition. Therefore, for the scope of this paper, decom-
position was restricted to determining only the amplitude
terms, as described above.

Experimentally, the amplitude decomposition was obtained
through the optical inner product measurement given in
Eq. (6) between the experimental field, U �r�, generated by
SLM1 and the match filter, LGp;l �r� � on SLM2 with a thin
lens performing the Fourier transformation. First, isolation and
imaging of the first diffraction order onto the match filter
(SLM2) was achieved through a 4f imaging system (lenses
L2 (f 2 � 300 mm) and L3 (f 3 � 300 mm), with an aperture
placed in the Fourier plane. The Fourier transform of the
resultant field after SLM2 (U �r�LGp;l �r��) was achieved with
lens L4 (f 4 � 200 mm). An aperture placed before CCD2

(PointGrey) isolated the first diffraction order, allowing the
optical inner product to be recorded, where an on-axis signal
dictated a correlation between the generated mode and match
filter, while an on-axis null indicated a mismatch. A pop-up
mirror (P-M), placed equidistant between SLM2 and CCD1

(Spiricon, LBA-FW-SCOR-7350115), was used to image
the generated near field to facilitate the alignment of the optical
elements.

B. System Verification
Testing of the system alignment and subsequent confirmation
of the associated technique was achieved by performing a modal
decomposition on the LGp;0 and LG0;l beams, where p � �0; 7�
and l � �−4; 4�. The intensities were detected at the origin of
the Fourier plane by CCD2 positioned in this plane, after the
Fourier transformation was carried out by L4. The intensity
detected by a single pixel at the origin yielded the power mea-
surement. It follows that direct correlation is expected whereby
maximal intensity is detected at the origin of the Fourier
plane for conjugate modes generated by SLM1 and SLM2,
while null intensity is detected at the origin for all other modal
combinations.

Figure 3 displays the system test results in the form of
density plots. Here, the main red diagonals illustrate strong de-
tection of the corresponding modes as expected, with negligible
detected intensities for the non-correlating LG modes.

Crosstalk evidenced by off-axis intensities greater than 0
(light blue) seen in Fig. 3 is due to system misalignment
and aberrations in the optical elements. This, however, is

Fig. 2. Image of the experimental setup used to decompose the vor-
tex beams into LG basis modes and measure the power distribution
between radial modes. Obj. Lens, objective lens (10×); M, mirror;
P-M, pop-up mirror; L, lens; SLM, spatial light modulator; A, aper-
ture; QWP, quarter-wave plate; QP, q-plate (q � 0.5); CCD, camera.

Fig. 3. Modal decomposition density plots for decomposition of ra-
dial (a) and OAM (b) LG modes of p � �0; 7� and l � �−4; 4�, respec-
tively, into the LG basis for determination of experimental system
accuracy and reliability. The false colors indicate the fractional detected
power, with the summation of intensities in each row yielding unity.
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minimal, indicating good system alignment as well as minimal
adverse aberrational effects. Consequently, a good degree of
accuracy and reliability can be expected for modes detected
by the system.

C. Vortex Radial Fields
An l � 1 vortex structure (without the amplitude term)
was generated by encoding SLM1, as described earlier.
Decomposition of the beam was performed for radial modes
p � �0; 7�, which yielded values for the power coefficients
described by Eq. (5). Figure 4 displays these experimental
values in terms of percentages together with the theoretical
values (blue curve) calculated from Eq. (5) for comparison.

The majority of the power (78.5%) is still retained within
the fundamental radial order, with maximal distribution of
the remaining power between the immediate adjacent radial
modes. Summation over the theoretical power coefficients in-
dicates that 95% of the total power falls within the p ≤ 4 radial
range. The experimental values are in excellent agreement with
the expected theoretical values, as seen by close positioning of
the respective data points and the maximum deviation of ∼2%
occurring within the system error at p � 0.

Similarly, encoding SLM1 with a vortex structure of l � 10
[Eq. (1)] generated a vortex mode of high OAM for radial
decomposition and analysis. Decomposition of the field was
performed for LG radial modes p � �0; 18�. A plot of results
similar to that of Fig. 4 is presented in Fig. 5 with a theoretical
(blue curve) and experimental comparison (red data points).

Good agreement between the theoretical and experimental
values is again evident with all experimental values (red) falling
within an acceptable range of theoretical predictions (blue), as
indicated by the error bars.

A significant shift and redistribution of power can be seen
across the radial modes in comparison to l � 1 (Fig. 4) as a
result of the higher OAM content. The power maximum being
centered at p � �7; 8� and a drop of ∼78.1% power in the fun-
damental mode (as only 0.4% remains in this mode for Fig. 5)
clearly illustrates this. Additionally, the maximum power car-
ried in a single radial mode decreased by ∼76.3%, as seen
in the power difference between p � 0 (Fig. 4) and p � 7
(Fig. 5), indicating that ∼76.3% more of the power is distrib-
uted amongst other modes than for a mode with an OAM of an
order of magnitude less. Furthermore, summation over the first
50 theoretical power coefficients only yields 64% of the total

beam power, and 95% can be seen to be spread over the first
500 radial modes.

Further experimentation, including the addition of a QWP
and QP as depicted in Fig. 2, allowed for a special case of vector
vortex modes to be tested. Such q-plates are now routinely used
in laboratories to create scalar and vector vortex beams by
imparting an azimuthal-only phase to the input beam, as was
done with the SLM, but by geometric phase control [21] rather
than dynamic phase control. We find identical results for the
q-plate as reported here for the SLM. This is illustrated in
Fig. 6, where the detected radial modes were removed for
an l � 1 beam generated by the QP by passing a beam with
the amplitude term pre-encoded such that the azimuthal term
supplied by the QP creates an eigenmode of free space. It fol-
lows that 100% power is expected in the fundamental mode.

It can be seen that maximal intensity exists in the fundamen-
tal radial mode, confirming that it is the phase variation itself
(the vortex) and not the manner in which it is implemented
that matters. Aberrations present in the QP are detected as
an additional radial mode (p � 2), causing the slight mismatch.
It may thus be concluded that minimal aberrations were present
in the QP and, as such, poor beam quality would be due to the
unmodulated azimuthal-induced phase and not the quality of
the QP itself.

Clear dissipation of the vortex beam power over an increas-
ing number of radial modes can subsequently be seen with

Fig. 4. Experimental and theoretical comparison of power weight-
ing across radial modes p � �0; 7� for a vortex mode of l � 1. The blue
line (theoretical) is included to guide the eye. Error bars for p > 0 are
too small to be observed.

Fig. 5. Experimental and theoretical comparison of power weight-
ing across radial modes � �0; 18� for a vortex mode of l � 10. The
blue line (theoretical) is included to guide the eye.

Fig. 6. Experimental and theoretical comparison of power weight-
ing across radial modes p � �0; 7� for a QP-generated vortex mode of
l � 1 with the radial modes removed. The blue line (theoretical) is
included to guide the eye. Error bars for p > 0 are too small to be
observed.
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beams of higher OAM content, which should inspire caution in
their utilization and generation for high OAM experiments.

Images of the beams with (LG) and without (azimuthal-only
vortex) the amplitude term of different OAM values (l � 5,
10) were taken in the far field for visual illustration of the
amplitude term effect. This is presented in Fig. 7. The values
shown on the bottom-right corners give the corresponding
theoretical and experimental percentage powers contained in
the desired p � 0 mode.

Figures 7(a) and 7(b) display LG0;5 and LG0;10 beams in the
far field, where the power is seen to be confined to the funda-
mental radial mode, as expected. Comparison with the respec-
tive beams with missing amplitude terms [Figs. 7(c) and 7(d)]
clearly show further radial power distribution by the supple-
mentary rings. An increase in the shift of power to farther rings
with an increase in OAM is also evident. Additionally, modes
(c) and (d) are larger than the modes containing the amplitude
term, demonstrating the distribution of maximal power to
further radial modes, as the diameter of the radial mode with
the peak power is then larger than the fundamental mode.

This is supported by the power values given in the bottom
corners, where a very high percentage of the beam power is seen
to be contained in the fundamental radial modes for beams
(a) and (b), which contain the amplitude term, and much
poorer percentages for beams (c) and (d), without the term.
Furthermore, the percentage power in the p � 0 mode may
be appraised as beam purity, where the amplitude-containing
beams can be seen to have a high beam purity as opposed
to the deteriorating purity apparent in the beams without this
vital term.

Reconsidering the LG equation [Eq. (2)], it follows that one
could expect the Laguerre term to be solely responsible for the

radial power distribution, as it controls the radial degree of free-
dom (p). In the case where p � 0, however, this polynomial
term reduces to 1 and subsequently has no effect on the radial
distribution. Examining the OAM-modulated amplitude term,
it could also be naively expected that it does not contribute to
radial distribution, but upon comparing Eqs. (1) and (2), it is
clear that for p � 0, this is the only non-constant term missing
and thus is responsible for the difference observed between
these azimuthal-only vortex beams and the LG beams, which
are eigenmodes of free space. It follows that exclusion of this
term removes the OAM-dependent amplitude modulation
and forces nature to correct for it by introducing radial distrib-
uted fields that may be interpreted as additional radial modes
in the LG basis. The spreading out of the beam power is
subsequently a direct consequence of forcing nature to exact
OAM modulation of the amplitude, whereby this unintended
effect is rapidly enhanced with increased OAM content in the
vortex beam.

Implications of this phenomenon can be deleterious for
experimental work where beam power and mode purity are
concerns, particularly when beams of higher OAMs are re-
quired. Generation of these missing-amplitude beams in such
experiments could result in many issues, such as detection
thresholds and increased measurement uncertainties as well
as the number of optical components it will be possible to
use in the experimental design. Due to this drastic power loss
with OAM, utilization of these beams could additionally cause
the beam power to become an issue in experiments where it
would ordinarily not be a consideration.

In establishing amplitude modulation to prevent this,
however, there will be initial overall transmissive and/or diffrac-
tive power losses induced by the methods currently available,
including spatial light modulators, where there is a perceptible
loss in beam power. Subsequently, consideration of experimen-
tal parameters is an important factor. Beams that are not of a
small OAM result in radial power distributions to such a degree
that the nature-inspired power loss far outweighs the loss
induced by the technique required for introducing OAM
amplitude modulation.

4. CONCLUSION

In conclusion, we have analyzed the radial distribution of
azimuthal-only vortex beams through decomposition into ra-
dial LG basis modes and compared them to the mathematical
structure of these eigenmodes. The results demonstrated a rapid
increase in radial power divergence with OAM content along
with a shift in the power maximum to farther radial positions.
Corresponding deterioration of the mode purity was sub-
sequently inferred. Further inspection between the modes
led to the deduction that this phenomenon was the natural
response to the absence of amplitude modulation by OAM.
Subsequently, the presence of this amplitude term correlates
to a counter-intuitive control of the radial power distribution.
Awareness of this dissipation of beam power from the zeroth
order is important for many experiments that require high
levels of beam power in these radial modes as well as the
solution to this problem by amplitude modulation.

Fig. 7. Experimental far-field images of vortex beams (a) l � 5,
(b) l � 10 containing the amplitude term and (c) l � 5,
(d) l � 10 without the amplitude term, illustrating its effect on the
retention of beam power within the lower order radial modes as well as
encoded beam structure. Measured (Me.) and theoretical (Th.) values
for the percentage power occurring in the p � 0 mode of the beam
are displayed in the bottom-right corner. Intensities are normalized to
the highest value for the individual images and thus are not indications
of relative power differences between the beams.
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