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Abstract: We demonstrate a simple approach, using digital holograms, to 
perform a complete azimuthal decomposition of an optical field. 
Importantly, we use a set of basis functions that are not scale dependent so 
that unlike other methods, no knowledge of the initial field is required for 
the decomposition. We illustrate the power of the method by decomposing 
two examples: superpositions of Bessel beams and Hermite-Gaussian 
beams (off-axis vortex). From the measured decomposition we show 
reconstruction of the amplitude, phase and orbital angular momentum 
density of the field with a high degree of accuracy. 
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1. Introduction 

Techniques to decompose light by use of Fourier optics have been known for a long time, 
and have been extensively reviewed to date [1]. Historically, these techniques have been 
applied to pattern recognition problems, and subsequently to the problem of studying the 
structure and propagation characteristics of laser beams [2–5]. Despite the appropriateness of 
the techniques, the experiments were nevertheless rather complex. Recently this subject has 
been revisited by employing computer generated holograms in a mode multiplexing scheme 
for the modal decomposition of laser beams from fibres [6–10], and for the real-time 
measurement of the beam quality factor of a laser beam [11]. While these techniques have 
significant merit, they require a prefabricated diffractive optical element. This implies that 
information on the modal basis to be used, and the scale parameters of this basis, are known. 
To date this has been achieved by first modelling the source under study. 

In this paper we consider the problem of the azimuthal decomposition of an arbitrary 
laser source, without any knowledge of the mode structure, the mode phases, or the scale of 
the amplitude distribution. We make use of a basis comprising the angular harmonics, which 
are independent of spatial scale, and express the spatial distribution in terms of spatially 
dependent coefficients in this basis. The result, as we will show, is that the complete 
decomposition can be achieved without any scale information. We use this to infer directly 
from measurements of the intensity of the superposition field, its phase, and its orbital 
angular momentum (OAM) density distribution. In fact, it is clear that since the entire field is 
known, all physical quantities associated with the field can be inferred. We illustrate the 
concept by executing a full azimuthal decomposition of: (i) a superposition of two OAM 
carrying Bessel beams, with relative phase differences and (ii) an off-axis vortex mode. A 
comparison of our experimental measurements to the predicted theory shows excellent 
agreement. 

2. Concept and theory 

The core idea is to expand our unknown field, u(r,�), into a basis that is not dependent on 
scale. Such a basis is the angular harmonics, exp(il�), that are orthogonal over the azimuthal 
plane. To illustrate that the azimuthal decomposition that we employ in this work is 
completely general, we consider, for example, the Laguerre-Gaussian (LG) basis as our 
OAM basis. An expansion of an arbitrary optical field in terms of this LG basis is given by 
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where c�p,l denotes the complex coefficients and Rp,l(r) is the radial part of the LG mode, 
which only depends on r. One can now combine, and sum over the part of the expression that 
contains a p-index 
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If the original expansion in terms of the LG modes is completely general, then by 
implication, so is the azimuthal expansion with the r-dependent coefficients. The coefficients 
are given by 
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The coefficient of the azimuthal modes contains information on the spatial distribution of the 
field. Each coefficient contains an arbitrary phase, ��l, relative to some reference, which we 
may take to be an external source or for convenience the first mode in the series, l = 0 at a 

specific value of r. To describe u(r,�) completely, we are required to determine the phase 
shift between modes and the magnitude of the coefficients. The coefficients may be found by 
an inner product calculation and a suitable match filter, as shown in Eq. (4). To implement 
this calculation in a physically realizable manner, consider the signal at the origin of the 
Fourier plane after a lens (for wavenumber k and focal length f) after the field has been 

modulated by a transmission function given by tl(r,�) 
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Since we wish to implement Eq. (4), it is clear that the transmission function has two 
requirements: (i) it should have an azimuthal phase variation opposite to the mode being 
analyzed, (ii) to select the information as a function of r it should consist of an annular slit 
centered at r = R and of negligible thickness, �R. These conditions are satisfied if the 
transmission function is defined as 
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The subscript l in tl and Ul refer to selecting the l
th

 mode in the expansion of Eq. (2). So that 
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By re-arranging the final result in Eq. (7), we find that 
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Firstly, we note that a measurement of the intensity of the signal, Il(R,0), at the origin in the 
Fourier plane returns exactly our desired magnitude of the coefficients, since 
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Secondly, we note that if we interfere our selected l mode with a reference wave and consider 
the inner product signal, then the unknown phase of the coefficient, ��l, can be found. If 
|g|exp(i�) represents the complex amplitude of the reference wave of the origin then the 
intensity, at the origin, as a function of the phase delay is given by 
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It is a simple task to invert Eq. (10) to find the unknown phase delay between the modes. 
With the complete azimuthal decomposition of the field achieved, as in Eq. (2), it is possible 

to calculate the intensity of the field, |u(r,�)|
2
, the phase of the field, arg[u(r,�)], the Poynting 

vector [12], 



 � �
2

2* *0 2 ,
4

c
i u u u u k u z

� � � �� � � � �	 
S
�

 (11) 

and finally the OAM density [13]: 
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The pertinent point here is that at no stage has any assumption been made on the scale of 
the basis functions. This is because we have elected to scan the field with an annular slit, 
thereby storing the scale information in the coefficient of a scale invariant basis. The scale of 
any OAM basis function is set by the radial coordinate. Since the radial coordinate becomes a 
part of the coefficient functions, the scale parameter is removed from the basis functions, 
resulting in the remaining azimuthal component becoming independent of scale. We will 
now show how to implement the technique with a phase-only spatial light modulator (SLM), 
thus allowing a full azimuthal decomposition of the field with digital holograms. 

3. Experimental methodology 

The experimental realization of the technique comprises two parts: the generation and then 
decomposition of the field, and is shown schematically in Fig. 1(a). The first SLM (denoted 
as SLM1) was programmed to produce various fields. The two cases that we considered were 
(i) a superposition of two OAM carrying Bessel beams [14] and (ii) an off-axis vortex mode. 
A Gaussian beam from a HeNe laser [Fig. 1(b)] was expanded through a 5 × telescope and 
directed onto the liquid crystal display of SLM1 (HoloEye, PLUTO-VIS, with 1920 × 1080 
pixels of pitch 8 �m and calibrated for a 2� phase shift at �~633 nm) where the hologram 
used to generate the field of interest was programmed. For the case where a superposition of 
two OAM carrying Bessel beams were studied, two annular rings modulated in their 
azimuthal phase [see Fig. 1(c)] were encoded onto SLM1. The amplitude transmission of 0 
everywhere outside the annular ring and 1 inside the ring was programmed using complex 
amplitude modulation for amplitude only effects on a phase-only device. The hologram takes 
the form of a high frequency grating that oscillates between phase values of 0 and �, and it 
has been shown that this results in the required amplitude transmission of Eq. (6) [15]. We 
shall refer to this as the checkerboard pattern: see zoomed in section of Fig. 1(c). The result 
is non-diffracting petal-like modes [Fig. 1(d)] that rotate as they propagate, and have been 
studied in detail elsewhere [15,16]. 

These fields were then magnified with a 10 × objective and directed to the second SLM 
(SLM2) for executing the azimuthal decomposition. This was accomplished by executing an 

inner product of the incoming field with the match filter set to exp(il�), for various l values, 
and for particular radial (r) positions on the field, as given by Eq. (6) and illustrated in Fig. 
1(e). The typical width of the ring in the experiments was �R = 80 �m. The width of the ring, 
as well as the azimuthal index (l) encoded within the ring, are limited by the resolution of the 
SLM. The field at the Fourier plane is shown in Fig. 1(f) – note that we only require the 
intensity at the origin of this plane. 



 

Fig. 1. (a) A schematic of the experimental setup for performing the modal decomposition. L: 
Lens (f1 = 15 mm; f2 = 75 mm; f3 = 200 mm and f4 = 200 mm); M: Mirror; SLM: Spatial Light 
Modulator; O: Objective; CCD: CCD Camera. The objective, O2, was placed at the focus (or 
Fourier plane) of lens, L4. Lens L3 and L4 perform a Fourier transform of SLM1 and SLM2, 
respectively, in a 2-f system. Objectives O1 and O2 are telescopes which image and magnify 
both the phase and amplitude of the fields at planes P1 and P3 to planes P2 and P4, respectively. 
(b) The Gaussian beam used to illuminate SLM1. (c) The digital hologram used to generate the 
optical field of interest (d) and the digital hologram (e) used to extract the weightings of the 
modes from the inner product (f). The digital holograms for generating (g) and decomposing 
(i) the field, to extract the intermodal phase. The intensity profile of the field at the plane of 
SLM2 (h) and CCD (j). Each hologram has a checkerboard pattern, shown as an inset to (c). 

In order to measure the phase delay between the modes, we switch off the checkerboard 
pattern in the centre of both SLMs. This results in a portion of the initial Gaussian beam 
passing through the entire optical system, without “seeing” the phase holograms. Because it 
follows the same path as the modes that we wish to study, we can use the central peak of the 
beam as our reference beam, |g|exp(i�). Figure 1(g) shows the initial generating step but with 
a constant phase in the centre of the hologram (black disk), the resulting mixing with the 
non-diffracting petals [Fig. 1(h)] and after passing through the second SLM [Fig. 1(i)] the 
resulting interference of the waves [Fig. 1(j)]. The constant phase of the reference could be 
changed across several values to provide information on the quadrant of the cosine function 
in Eq. (10). Note that switching between the intensity measurement [Figs. 1(c)–1(f)] and the 
phase measurement [Figs. 1(g)–1(j)], we require only a change in the holograms loaded onto 
SLMs 1 and 2. This switching between holograms can be done at 60 Hz, i.e., practically real-
time acquisition of the necessary data. 

4. Results and discussion 

4.1. Superposition of two OAM carrying Bessel beams 

To test the accuracy of the method, we first created a superposition of two Bessel beams with 
opposite handedness, i.e., m = 3 and n = –3 and defined generally as 
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The phase delay, ��, in Eq. (13) was then varied between 0 and 2�, resulting in a rotation of 
the intensity pattern, which can easily be measured by observing the angular displacement of 
any one of the petals. This measured rotation is directly related to ��, thus allowing the 
measured phase shift to be compared to the programmed value. The programmed phase shift 
and resulting petal rotation are shown in Fig. 2(a), and compared to the theoretical rotation. 
The results of this calibration test are shown in Fig. 2(b), where it is clear that the agreement 
between measured and actual is very good (slope difference of 0.1%). The error bars were 
determined through a range of intensity values in the finite region (few pixels) around the 



origin of the Fourier plane. These results confirm that the setup was working correctly 
without spurious effects. 

 

Fig. 2. (a) If the phase is shifted in one of the modes in the initial field (top row), then the 
measured petal structure of the superposition field (middle row) is seen to rotate, as predicted 
by theory (bottom row); (b) comparison of the measured phase shift to the actual phase shift; 
(c) interference of the modes with a reference wave results in changing intensity at the origin 
of the Fourier plane, which can be used to infer the phase shift per mode; (d) comparison of 
the measured phase shift to the actual phase shift (see Media 1 and Media 2). 

Next, the programmed phase shift �� was measured using the interference technique and 
analyzed using Eq. (10). The phase shift in the n = –3 beam was scanned through 0 to 2� and 
the interference monitored, as shown in Fig. 2(c). By removing the offset phase of the 
reference beam (corresponding to the maximum in the interference signal), the measured 
phase could be compared to the programmed phase. The results are also shown in Fig. 2(d), 
and again the agreement is good (slope difference of 3%), but with some uncertainty near a 
programmed phase shift of 0.60� and 1.60�; these discontinuities occur at maxima and 
minima in the interference intensity [Fig. 2(c)], and are due to the flatness of the change in 
the measured intensity for a change in phase value (three values were used to uniquely 
determine the phase). To illustrate further that the technique works, we constructed a 
superposition field with m =  + 3 and n = –2, to deliberately break the symmetry of the field. 
The annular ring on SLM2, of width 80 �m, was scanned through 28 radial positions 

(maximum number to scan our field) and the azimuthal phase varied across l![–10,10]. The 
only non-zero components (>0.5% of the modal power) were those corresponding to l =  + 3 
and l = –2, which contained ~95% of the modal power. With all the unknown terms in Eq. 
(4) measured experimentally, we were able to reconstruct the intensity and phase of the 
initial field, and compare it to the theoretical prediction (based on our own hologram function 
on SLM1). The results for the intensity of the field are shown in Figs. 3(a) and 3(d) while that 



of the phase of the field is given in Figs. 3(b) and 3(e). There is very good agreement 
between the theoretically predicted field and the field reconstructed from the azimuthal 
decomposition. 

 

Fig. 3. A comparison of the theoretical (top row) and the experimentally reconstructed 
(bottom row) images of the (a, d) intensity, (b, e) phase, and (c, f) OAM density of the light. 

An interesting application of this technique is the determination of the complete OAM 
density of the field. It has been known for some time now that photons carry orbital angular 
momentum ([17] and references therein), yet it remains a challenge to measure the local and 
global OAM of a field in a manner that is quantitative. Previously we have attempted such 
measurements without the phase information, and found success for particular structures of 
optical fields [12,13]. With a full azimuthal decomposition of the field, including the phase 
delays, we can infer the OAM density of any field directly from our measurement. The 
theoretical and experimental results of this are shown in Figs. 3(c) and 3(f), respectively, and 
are in agreement. 

4.2. Off-axis vortex mode 

Next we apply our decomposition technique to the example of a Gaussian beam with an off-
axis vortex. The results are presented in Fig. 4. 

 

Fig. 4. A comparison of the experimentally recorded intensity (a) and the reconstructed 
intensity (b), for the off-axis vortex case, created from a superposition of Hermite-Gaussian 
modes. 


